hide

首页 / 新闻

Amorphous Fe2O3 for photocatalytic hydrogen evolution†

论文插图 封面设计 | First Published: 2019-10-21

Zhaoyong Lin, ORCID logo a Chun Du, ORCID logo a Bo Yana and Guowei Yang ORCID logo *a

Fe2O3 has drawn significant attention in photocatalysis due to its natural abundance, thermodynamic stability, environmental compatibility, low toxicity and narrow bandgap. Here, for the first time, we demonstrate that amorphous Fe2O3 nanoparticles can act as efficient and robust photocatalysts for solar H2 evolution without any cocatalysts. We also establish a plausible mechanism involving the amorphization-induced thermodynamic and dynamic behaviors of amorphous Fe2O3 upon photocatalytic hydrogen evolution. Thermodynamically, amorphization provides more surface states and larger carrier density, and thus elevates the conduction band edge to go across the H2 evolution potential level. Dynamically, amorphization-induced crystal field splitting weakening delocalizes the photogenerated carriers, and thus overcomes the excitation-wavelength-dependent small polaron trapping effect. These findings imply that amorphization may be a promising approach to functionalize and tailor other photocatalysts.

原文链接

https://pubs.rsc.org/en/content/articlelanding/2019/cy/c9cy01621j#!divAbstract

回到顶部

联系我们

  • 地址

    辽宁省沈阳市铁西区北一西路52甲号830-06

  • 热线电话

    13236639606 或 13022406957

  • QQ

    客服1:1114371869 客服2:2501950479 客服3:1114371777

官方分享

辽公网安备21010602000232号

copyright © 2016 沈阳智研科技有限公司 版权所有网站建

沈阳网站建设:龙兴科技