hide

首页 / 封面设计

Cinnamate-Functionalized Natural Carbohydrates as Photopatternable Gate Dielectrics for Organic Transistors

Zhi WangXinming ZhuangYao ChenBinghao WangJunsheng YuWei Huang*Tobin J. Marks*Antonio Facchetti*

论文插图 封面设计 | First Published: 2019-09-24

Photolithographic-defined films play an important role in modern optoelectronics and are crucial for the development of advanced organic thin-film transistors (OTFTs). Here, we explore a facile photoresist-free photopatterning technique with natural carbohydrates and its use as an OTFT gate dielectric. The effects of the cross-linkable chemical structure on the cross-linking chemistry and dielectric strength of the corresponding films are investigated in cinnamate-functionalized carbohydrates from monomeric (glucose) to dimeric (sucrose) to polymeric (cellulose) backbones. UV illumination of the cinnamate esters of these carbohydrates leads to [2 + 2] cycloaddition and thus the formation of robust cross-linked dielectric films in the irradiated areas. Using propylene glycol monomethyl ether acetate as the solvent/developer, patterned dielectric films with micrometer-sized features can be readily fabricated. P- and N-type OTFTs are successfully demonstrated using unpatterned/patterned cross-linked films as the gate dielectric and pentacene and N,N′-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDIF-CN2) as the p- and n-channel semiconducting layers, respectively. These results demonstrate that natural-derived polymer gate dielectrics, which are soluble and patternable using biomass-derived solvents, are promising for the realization of a more sustainable OTFT technology.

原文链接

https://pubs.acs.org/doi/10.1021/acs.chemmater.9b02413

回到顶部

联系我们

  • 地址

    辽宁省沈阳市铁西区北一西路52甲号830-06

  • 热线电话

    13236639606 或 18809875865

  • QQ

    客服1:1114371869 客服2:2501950479 客服3:1114371777 客服4:2841761885

官方分享

辽公网安备21010602000232号

copyright © 2016 沈阳智研科技有限公司 版权所有网站建

沈阳网站建设:龙兴科技