hide

首页 / 封面设计

High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte

Chen WangChen Wang Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China Center of Materials Science and Optoelectronics Engineering, Univer

封面设计 | First Published: 2020-11-10

In situ polymerization system can provide a compact and compatible interface with minimum polymer electrolyte, which is imperative to address the bottleneck of notorious solid–solid interface issues for high-energy-density solid-state batteries. However, the existing in situ formed solid-state electrolyte still faces many problems, such as low polymerization conversion and inferior high-voltage stability, prohibiting its applications in practical high-voltage lithium-metal batteries. Herein, we present a deep eutectic solvent (DES)-based in situ polymerized solid electrolyte, which is facile and well matched with the commercially available lithium-ion battery technology. The DES precursor is made from a molten mixture of solid powders, containing a synthesized monomer named (2-(((2-oxo-1,3-dioxolan-4-yl) methoxy) carbonylamino))-ethyl methacrylate (CUMA), a succinonitrile (SN) plastic crystal, and two kinds of lithium salts. After in situ ploymerization triggered by free radical, the liquid again turns into a solid composite electrolyte (PDES-CPE) with a superior polymerization conversion of 99.8%. It delivers a promising lithium-ion conductivity (1.07 × 10–3 S/cm with a high lithium-ion transference number of 0.62 at 30 °C) and prominent high-voltage stability (100 cycles with 82.4% capacity retention coupled with 4.6 V LiCoO2 cathode). Through in situ Fourier transform infrared (FTIR) spectroscopy, we reveal a robust interface chemistry with thermodynamically improved high-voltage stability (compared to polyether-based electrolyte). This as-presented strategy makes a big leap to address the interface issues and boost the development of high-energy-density solid-state lithium-metal batteries.

原文链接

https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02481

回到顶部

联系我们

  • 地址

    辽宁省沈阳市铁西区北一西路52甲号830-06

  • 热线电话

    13236639606 或 18809875865

  • QQ

    客服1:1114371869 客服2:2501950479 客服3:1114371777 客服4:2841761885

官方分享

辽公网安备21010602000232号

copyright © 2016 沈阳智研科技有限公司 版权所有网站建

沈阳网站建设:龙兴科技