hide

首页 / 封面设计

Cationic and anionic redox in lithium-ion based batteries

Matthew Li, ORCID logo ab Tongchao Liu,a Xuanxuan Bi,a Zhongwei Chen, ORCID logo b Khalil Amine, ORCID logo ac Cheng Zhong ORCID logo *d and Jun Lu ORCID logo *a

封面设计 | First Published: 2020-03-24

Lithium-ion batteries have proven themselves to be indispensable among modern day society. Demands stemming from consumer electronics and renewable energy systems have pushed researchers to strive for new electrochemical technologies. To this end, the advent of anionic redox, that is, the sequential or simultaneous redox of the cation and anion in a transition metal oxide based cathode for a Li-ion battery, has garnered much attention due to the enhanced specific capacities. Unfortunately, the higher energy densities are plagued with problems associated with the irreversibility of anionic redox. Much effort has been placed on finding a suitable composition of transition metal oxide, with some groups identifying the underlying features and relationship for anion redox and cationic redox to occur reversibly. Accordingly, it is timely to review anionic redox in terms of what anionic redox is with emphasis on the mechanism and the evidence underlying its discovery and validation. To follow will be a section defining the nature of the transition metal and oxygen bond accompanied by three subsequent sections bridging the redox spectrum from pure anionic, to a mix of cationic and anionic and pure cationic.

原文链接

https://pubs.rsc.org/en/content/articlelanding/2020/cs/c8cs00426a#!divAbstract

回到顶部

联系我们

  • 地址

    辽宁省沈阳市铁西区北一西路52甲号830-06

  • 热线电话

    13236639606 或 18809875865

  • QQ

    客服1:1114371869 客服2:2501950479 客服3:1114371777 客服4:2841761885

官方分享

辽公网安备21010602000232号

copyright © 2016 沈阳智研科技有限公司 版权所有网站建

沈阳网站建设:龙兴科技