hide

首页 / 封面设计

Revealing the multilevel thermal safety of lithium batteries

Author links open overlay panelGaojieXua1LangHuanga1ChenglongLuaXinhongZhoubGuangleiCuia

封面设计 | First Published: 2020-09-28

The ever-growing “endurance mileage” anxiety has been stimulating the continuous energy density raising of Li-ion batteries (LIBs) and the burgeoning of battery chemistries “beyond Li-ion”. However, if operated under abuse conditions, LIBs are easy to get thermal runaway. Encouragingly, great efforts have been devoting for achieving safer LIBs. However, the pace of thermal safety assessment has obviously lagged behind the energy density improvement of LIBs. Therefore, it is urgently needed to systematically, comprehensively and timely study the thermal safety issue of LIBs by combining different testing methods. In this review, we briefly summarize the varied testing methods for thermal safety evaluation of LIBs. Wherein, the highly-integrated accelerating rate calorimetry (ARC, an adiabatic calorimeter) technology is widely used to study the “worst case” thermal safety of LIBs at multilevel, ranging from ranging from battery materials to single cells and even battery packs. Combined with examples, the realizable specific functions of ARC in evaluating the thermal safety of LIBs are systematically summarized, and it reveals that the thermal safety of LIBs are rather complicated. Finally, critical perspectives in studying and improving thermal safety of LIBs and battery chemistries “beyond Li-ion” are provided.

原文链接

https://www.sciencedirect.com/science/article/pii/S240582972030218X

回到顶部

联系我们

  • 地址

    辽宁省沈阳市铁西区北一西路52甲号830-06

  • 热线电话

    13236639606 或 18809875865

  • QQ

    客服1:1114371869 客服2:2501950479 客服3:1114371777 客服4:2841761885

官方分享

辽公网安备21010602000232号

copyright © 2016 沈阳智研科技有限公司 版权所有网站建

沈阳网站建设:龙兴科技